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Overview of Talk
• Use of stochastic models for features in steganalysis

– Feature selection in steganalysis: informal approach

– Motivation to use stochastic models for steganalysis

• Define partially ordered Markov models and give a 
general problem solution for creating features for 
steganalysis using POMMs

• Experiments
– Five JPEG  embedding algorithms

– Three additional steganalyzers

• Results

• Future research
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Statistical steganalysis feature development

• The image A is modeled as a collection of random 
variables (r.v.s) with a probability distribution

• A vector of feature values is 
calculated from the image pixels, where n << the 
number of pixels in the image

• The functions                   are chosen by the 
steganalyst using domain knowledge

• Features are selected to exploit known differences 
between stego and cover characteristics and used in 
targeted or blind pattern recognition systems
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Statistical steganalysis feature development

• Previously used probability distributions for 
features in steganalysis

– Generalized Gaussian distribution for modeling 
mode histograms of DCT coefficients

– Markov chains for pixels adjacent in the DCT 
domain and in the spatial domain (Shi et al. 2007, 
Pevný 2009)

– We were motivated to investigate other stochastic 
models that could provide theoretical foundation 
for modeling steganographic changes to image
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Acyclic directed graphs 
and partially ordered sets 

• Definition. Let (V,E) be a finite acyclic directed graph:

• Definition. Let (V, ≤) be a partially ordered set (poset) where ≤ is a binary 
operation on V:

• Example: V = all subsets of a set,                (set inclusion) 
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Acyclic directed graphs 
and partially ordered sets 

• Def. For Vi , Vj ε (V,≤), Vi is covered by Vj if Vi < Vj and Vi < 
Vk < Vj for no k. 

• Given graph (V,E), construct poset (V,≤) by 

– (i,j) ε E implies Vi is covered by Vj in (V,≤).

– This defines a partial order on V

– In this case we write Vi < Vj

• Edge (4,1) defines the relation between

V4 and V1 , so V4 is covered by V1 

and V4 < V1
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Definitions
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cone(B) {C V :C B,C B}

adj (B) {C : (C,B) E}  all elements covered by B

L0  set of minimal elements in V (no edges incoming to vertices)
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Definition of partially ordered Markov model

• Def. Let V be a set of random variables and B ε V, 
where V is a finite acyclic digraph (V,E) with poset 
(V,≤). Let

Then (V,≤) is called a partially ordered Markov 
model (POMM) if for any B ε V\L0 and any subset 
UB        YB we have

• The lower adjacent neighbors describe the 
“Markovian” property of the model  
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Our interest

• A = {Aij : 1 ≤ i ≤ N, 1 ≤ j ≤ M}: set of r.v.s on array

• S = {S1 ,…, St} is a collection of subsets of r.v.s in A 
where each Sk  is an ordered set

• Example: Sh , S1
h = {A11, A12}, S2

h = {A12, A13}, etc.

• Introduce a function f : S R the set of real 
numbers that gives quantifying information about 
the subsets

• Example: 
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Our interest
• Create an acyclic digraph:

where Ei = (f(Si ), Si ) and has tail on f(Si ) and head on Si 

• We call this the function-subset acyclic digraph, or f-S 

• We use this acyclic digraph to construct a sequence of 
POMMs whose conditional probabilities are used as 
features

• If f is a useful function for the steganalyst, then the 
quantity P(Sk|f(Sk)), which is a measure of the frequency 
of occurrence of the pre-image of f(Sk), can be used to 
distinguish between cover and stego images

• This is the motivation for using the f-S partial 
order/acyclic digraph as defined earlier
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Diagram of f-S acyclic digraph
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Features

• Collect information in four directions: Sh, Sv, Sd, Sm

• Create a POMM for each of the four directions Ph, Pv, 
Pd, Pm

• Calculate conditional probabilities P*(S*
k|f (S*

k)), * ε 
{h,v,d,m} using the quantized DCT array of values 
thresholded by value T 

• Each direction gives a (2T + 1) x  (2T + 1) feature 
matrix F*(w,z) = P*(w,z|f (w,z)

• Average over four directions to get (2T + 1)2

intrablock feature values:
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Features

• Also construct POMMs using interblock values 
from quantized DCT array in a similar manner

• There are 8*8 = 64 mode arrays

• Average over the 64 feature matrices to get 
another (2T + 1)2 feature values

• Total number of features = 2*(2T + 1)2 and it 
depends on the value T
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Experiments

• Used four databases: BOWS2 (10,000 images), a 
camera database (3164), Corel (8185), NRCS (2375)

• Created training and testing data from these DB

• Used three additional state of the art steganalyzers: 
– Shi’s Markov model using intrablock values (Shi et al, 

2007); “Markov324” (324 features)

– Shi’s Markov model using both intra and interblock 
values (Shi et al, 2008); “Markov486”

– Pevný merged model with extended DCT features plus 
calibrated Markov values from Markov324 (Pevný et 
al., 2007) “Merged”
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Experiments

• Classifier: soft margin support vector machine 
with Gaussian kernel and grid-search method to 
determine training parameters (LIBSVM)

• Five embedding algorithms at four embedding 
rates each: Jsteg, OutGuess, F5, StegHide, and 
JPHide; bpnz = 0.05, 0.1, 0.2, 0.4 (except last one 
was omitted for OutGuess)

• Calculated detection accuracy using binary 
classifiers
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Method 

• Tried five values for T: T = 1, 2, 3, 4, 5

• Overall best detection accuracy was achieved for 
T = 3; this gives a total of 98 features

• Developed binary classifiers for each case, total of 
24 binary classifiers

• Half of data was used for training, other half for 
testing

• Tested each database separately
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Results and discussion
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StegHide using 
BOWS2 database



Results and discussion
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JPHide using 
Camera database



Discussion

• POMMs perform better almost without exception 
than either Markov model particularly at the lower 
embedding rates

• POMM performed better than Merged for Outguess 
and StegHide across all databases and all embedding 
levels

• Merged performed better than POMMs at lower 
embedding rates for F5 and JPHide across all 
databases

• At highest levels of embedding all algorithms 
performed similarly well
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Discussion

• Another way to measure performance

• Criterion: Performed >greater than 1% better 
than any detector, or within 1% of top detector, 
on cover, 0.05 and 0.1 embedding rates (most 
difficult to detect)

• POMM: 17% of the time

• Merged: 18% of the time

• Other two steganalyzers were far beneath that
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Conclusion
• Introduction of new modeling tool to measure embedding 

changes

• Allow steganalyst to create functions to detect changes

• Can use other measures of the probability distribution for 
features such as moments – mean, variance, etc.

• Possibility of using joint pdf in detection (MLE), as joint pdf is 
computationally efficient

• 98 features give equivalent detection to Merged steganalyzer 

• Current and future research: double compression detector 
for use in police forensic GUI software

• Use of POMMs for spatial embedding detection

• Use of other functions f and subsets S 
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