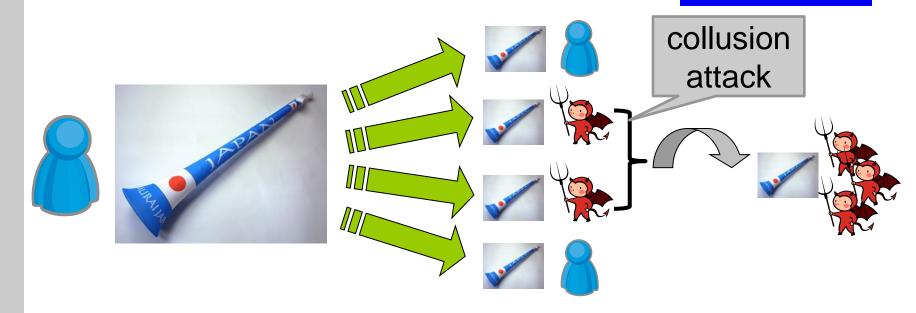


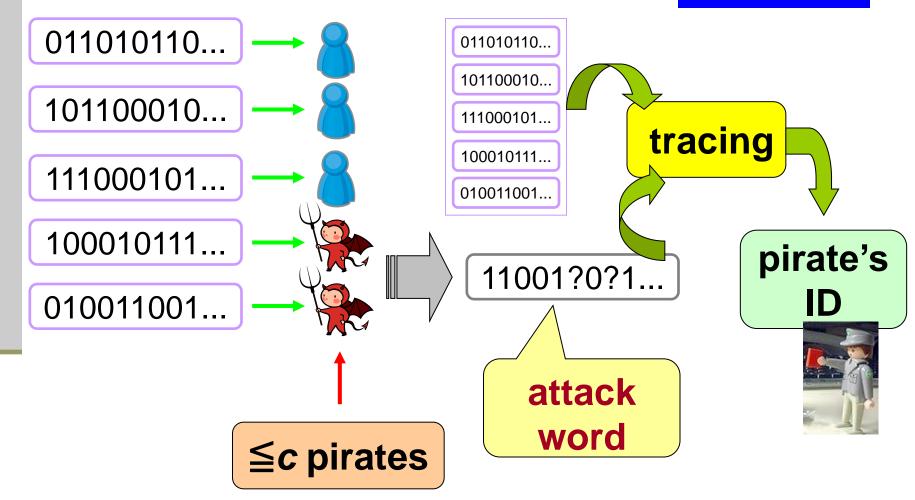
Short collusion-secure fingerprint codes against three pirates

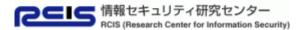

Koji Nuida RCIS, AIST, Japan Information Hiding 2010, June 28, 2010

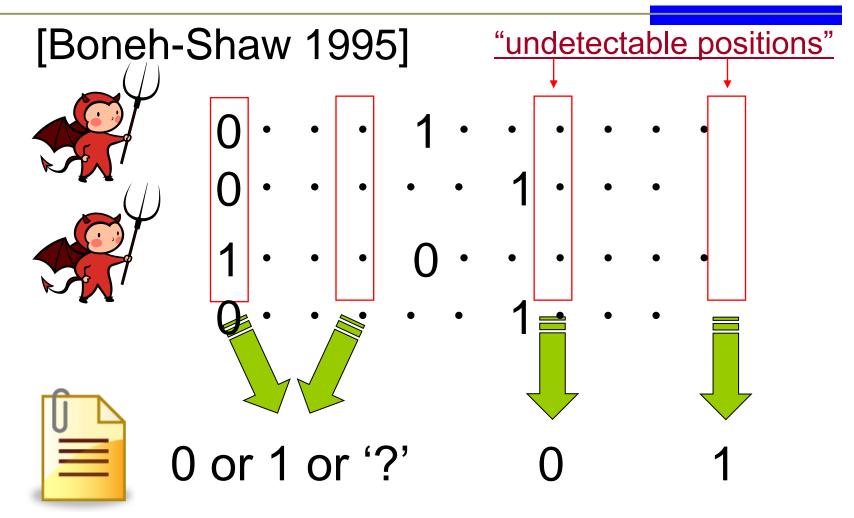

Outline

- Problem setting
- Preceding works
- Our contribution: Short 3-secure code
 - E.g., 100 users, 135 bits \rightarrow 0.9% error
 - Codeword generation (not new)
 - Tracing algorithm (key point)
- Comparison of code lengths
- Observation for speedup of tracing

Problem




- How to prevent illegal redistribution of copied digital content?
 - How to determine the "pirate"?


c-Secure Codes

Marking Assumption

Preceding Results


- Tardos' s c-secure code [2003]
 - code lengths of optimal order
 - a variant has length asymptotically 1/19 of Tardos [Nuida et al. 2009]
- The shorter, the better
- Further shorter code?
 - e.g. for restricted number *c* of pirates?
 2-secure, 3-secure, ...

Single or Joint Decoder

- Tracing in Tardos code uses a score for individual user
- Some preceding 2- or 3-secure codes use "parent search" technique
 - Search for a group of users whose codewords can generate the attack word
- More powerful, but less speedy and more difficult to evaluate theoretically

Our Result

- Short 3-secure code with security proof
- Codeword generation is not new
- Tracing algorithm consists of 2 parts
 - 1st part: Score calculation phase
 - Defying "unbalanced" attack strategy
 - 2nd part: Parent search phase
 - Defying "balanced" attack strategy
 - Making the security proof less complex

Codeword Generation

- Each bit of each codeword is chosen uniformly at random
 - Same as Tardos code, but with no bias
- The case of probability p ≠ 0.5 to choose `1' is also analyzed
- According to the present evaluation, p = 0.5 minimizes the "main term" of error probability

Tracing – 1st Phase

- For each codeword w, Calculate "(code length) – (Hamming distance of w and the attack word)" as score of the user
- Then a user is accused, if the score exceeds a suitably chosen threshold
 - If attack strategy is "unbalanced", then the success probability of this phase becomes higher

Feasible Sets & Parents

F(w₁,w₂,w₃) := {attack words which can be generated by w₁, w₂ and w₃}
T(y) := { {u₁,u₂,u₃} | y in F(w₁,w₂,w₃) }
Note: {the 3 pirates} is in T(attack word)

Tracing – 2nd Phase

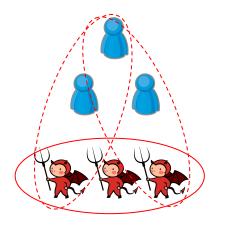
$\blacksquare \text{ If } \mathcal{T}' = \{ T \in \mathcal{T}(y) \mid T \cap T' \neq \emptyset \; \forall T' \in \mathcal{T}(y) \}$

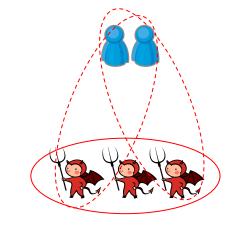
is empty, then output nobody
If ∩ T' is non-empty, then output its members

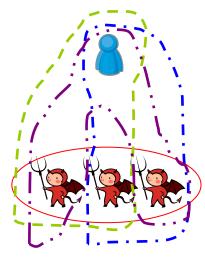
Otherwise, at least one pirate is determined with high probability, by checking the "shape" of *T*'

Thanks to its "asymmetry" (see below)

Some Intuition for 2nd Phase (1)


- The first case is rare, if the code length is sufficiently large
- When the attack strategy is "balanced", the second step is likely to output some pirate (and no innocent)



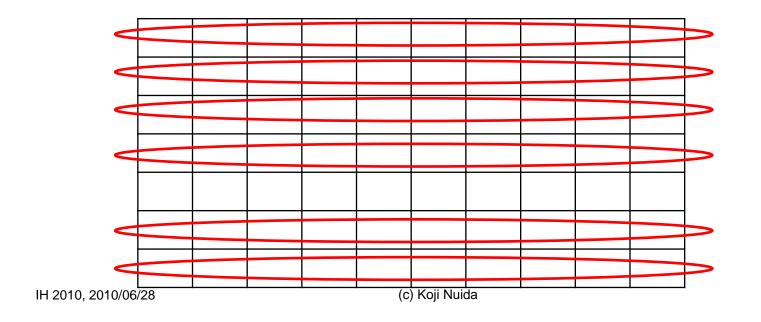


Some Intuition for 2nd Phase (2)

The last step fails only when the following "symmetric" pattern occurs
 Its probability is negligible, by our analysis

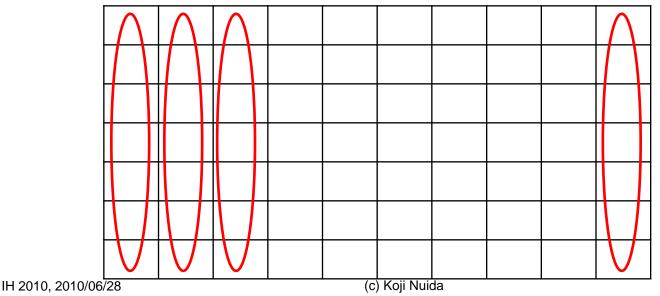
Performance Evaluation

We gave a formula of error probability
 The "main term" is about N³(7/8)^m /6
 Example of code lengths


user number N		300	1e+6
error probability		1e-11	1e-3
code length	Nuida '09	1309	877
	ours	420	349
ratio		32.1%	39.8%

Observation for Speedup (1)

In a naïve calculation of the set T(y), each row of the codeword matrix is evaluated about N²/2 times





Observation for Speedup (2)

- I tried to evaluate the codeword matrix column-wise, instead of row-wise, to avoid the duplicated evaluation
 - Detailed analysis is future work

Conclusion

- We constructed short 3-secure code, with pirate tracing algorithm combining Tardos's score calculation method with parent search (joint decoding) method
- The code lengths are about 30% to 40% shorter than the existing shortest 3-secure codes
- Speedup of tracing is future work