A Unified Submodular Framework for Multimodal IC Trojan Detection

Farinaz Koushanfar, Azalia Mirhoseini, Yousra Alkabani Electrical and Computer Engineering Department Rice University

Outline

- Introduction
- Assumptions
- Related work
- Contributions
- Trojan detection
- Experimental evaluation
- Summary and conclusion

Introduction

- Horizontal business model
 - IP providers, IC designers, and foundries are separate companies
- Potential threats of this business model
 - Theft of IPs, piracy of ICs, and addition of Trojans
- Trojan component maybe inserted
 - To monitor, control, spy, or steal information from the chip

Trojan detection challenges

- Trojan insertion mechanisms not known
- Many opportunities
- Exponential growth of the number of gates vs. linear increase in the number of pins
 - Limited controllability and observability
- Foundaries with advanced technologies
 Multiple opportunities to insert Trojans
- Increase in process variation with technology
 Difficult to detect change due to Trojan insertions

Assumptions

- Unobtrusive timing, static power and dynamic power testing
- Adversarial model
 - Trojan IC has the same set of input/output pins as the original design
 - ICs have already passed the standard parametric and functional tests
 - The nominal profile of each gate in each modality is available

Related work

- Power signature for Trojan detection
 - Building IC fingerprints from power traces, statistical testing to detect altered ICs [Aragwal et al. S&P 2007]
 - Power measurements from multiple supply ports, and emperical sensitivity analysis [Rad et al. HOST and ICCAD 2008, IEEE trans. on VLSI 2009]
 - Partitioning the circuit into regions and testing suspected regions [Banga and Hsiao HOST 2008]
- Timing signature for Trojan detection
 - E.g., principal component analysis [Jin and Makris HOST 2008]

Related work(need abstract of the works)

- Gate-Level Characterization
 - Gate-Level Characterization: Foundations and Hardware Security Applications[Wei et al. DAC 2010]
 - SVD-Based Ghost Circuitry Detection[Nelson et al. IH2009]
 - Characterizing leakage current of gates with a consistency based algorithm [Alkabani et al. ICCAD 2009]

Contributions

- A new unified formal framework for IC Trojan detection by noninvasive measurements
 - Unimodal anomaly detection built upon the gate level profiling (Timing, static and dynamic power modalities investigated)
 - Different multimodal Trojan detection methods for combining unimodal detection results
- A submodular objective function
 - An iterative greedy detection algorithm that achieves a near optimal solution in polynomial time
- A method to calibrate the systematic variations
 - Robust to measurement noise and process variation

Submodular property: intuition

• Inserting a Trojan would have a higher impact on a small circuit than inserting the same Trojan to a larger circuit that contains the small one

Unimodal Trojan detection method

- Trojan detection method is built upon the gate profile estimation
 - Generate input vectors that enable gate profile measurements
 - Apply the measurement vectors and map the measured values to gate scaling factors (deviation from the nominal gate profile}
 - The anomalies are detected through an iterative hierarchical approach

Unimodal detection algorithm

•Estimate gate scaling factors
•Calibrate systematic variations
•Select a gate to reweigh
•Adjust measurements
•Re-estimate scaling factors
•Evaluate improvement in objective function(OF)

in OF above

threshold?

No

Select the gate o with maximum effect on OF (Greedy selection)
Identify gate o as anomalous
Remove gate o

Done

ves

-Increase number of benign gates ($\mathrm{N}_\mathrm{b}\mathrm{)}$

Scaling factor estimation & calibration

Estimate scaling factorsCalibrate scaling factors

- •A: matrix of nominal values
- •Φ: scaling factors
- •E: measurment error
- B: measured value for each input

•Solve $A\Phi + E = B$ minimizing mean square error of E to compute Φ

 Filter out systematic variations using 2D high pass filter

Reweighing scaling factors

Select a gate to reweigh
Adjust measurements
Re-estimate scaling factors

Reweigh using a Gaussian kernel function
Recompute B after reweighing the scaling factors
Solve AΦ+E=B minimizing mean square error of E to get Φ

Objective function

•Evaluate improvement in OF•Remove the anomalous gate o

Objective function: R(Γ) = L(D) – L(D\Γ)
L is maximum likelihood of error or min L₂(E)
D is the set of all gates
Γ is the set of anomalous gates
The objective function is submodular
D\Γ or removing anomalous gates is to set their scaling factors equal to the nominal unity value

Objective function R is submodular

- $R(\Gamma) = L(D) L(D \setminus \Gamma)$ is a penalty reduction function
- Penalty will not be reduced if we do not reweigh a new anomalous gate, i.e., R(∅) = 0
- R is a non decreasing set function:
 - Reweighing a new anomaly could just decrease the associated penalty, i.e., R(Γ1) ≤ R(Γ2), for Γ1 ⊆ Γ2 ⊆ D
- R satisfies the diminishing return property

Diminishing returns characterization

 Reweighing a gate in a smaller set of gates D_s, improves the reward at least as much as reweighing it in a larger set of gates D_l, with D_s ⊆ D_l

Greedy approach: near optimal solution of submodular function

Theorem: [Nemhauser et al '78] For a submodular function R greedy algorithm gives constant factor approximation

 $R(\Gamma_{\text{greedy}}) >= (1-1/e) R(\Gamma_{\text{opt}})$

~63%

- Greedy algorithm gives near-optimal solution!
- For information gain: guarantees best possible unless P = NP! [Krause & Guestrin '05]

More on calibration

- Inter-chip variations
 - Affect the mean of the variations
 - Adjusted by shifting the mean of the extracted profile values to have a mean of unity

Intra-chip variations

- In form of a spatial distribution, e.g., 2D Gaussian in our model
- Systematic intra-chip variation is slower than the rate of change because of the Trojan insertion
- Resolved by 2D Discrete Cosine Transform (DCT) high pass filter

The unified multiomodal Trojan detection framework

Multimodal Trojan detection techniques

- Unanimous voting
 - Decreases P_D but improves P_{FA}
- Conservative voting
 - Increases P_{FA} but also increases P_D, gives maximum achievable P_D
- Majority voting
 - $\hfill \hfill \hfill$
- Weighed voting
 - $\hfill \hfill \hfill$

Experimental evaluation

- Setup
 - MCNC'91 benchmarks
 - ABC synthesis tool
 - HSPICE for nominal leakage computation
 - Placement by the Dragon tool
 - Matlab for the simulations and solving the quadratic programs (QPs)

Measurement setup(Please take a look at it) • Timing:

- Testing pattern generation method described in [Yang et al.]
- Leakage current
 - The IDDQ tests via off-chip pins by the precision measurement unit (PMU) [Sabade et al.]
 - TetraMAX ATPG is used for IDDQ test generation
- Dynamic current
 - IDDT tests by averaging methods that do not require high precision or high frequency measurement devices needed for capturing the transient signals [Jha et al.]

Gate-level characterization vs. measurment noise(Static power)

Ct	Size	i/p	o/p	3%	5%	10%
C8	165	28	18	5.6	7.0	11.6
C432	206	36	7	1.7	3.5	7.2
C1355	512	41	32	8.5	10.0	12.1
C499	532	41	32	2.9	4.5	9.0
C3450	1131	50	22	4.0	5.9	9.8

Gate-level characterization vs. measurment noise(Dynamic power)

Ct	Size	i/p	o/p	3%	5%	10%
C8	165	28	18	4.2	6.4	11.2
C432	206	36	7	1.5	3.1	6.9
C1355	512	41	32	7.8	9.1	11.5
C499	532	41	32	2.2	4.2	8.8
C3450	1131	50	22	3.5	6	9.5

Gate-level characterization vs. measurment noise(Timing)

Ct	Size	i/p	o/p	3%	5%	10%
C8	165	28	18	5.3	7	11.5
C432	206	36	7	3.8	5.4	10.1
C1355	512	41	32	4	8	12.3
C499	532	41	32	5	6.5	12
C3450	1131	50	22	2.9	4.1	9.2

Boxplots of N_b for Trojan free, 1 Trojan, and 3 Trojan gates

Leakage scaling factors for two anomalous gates in C432

The stepwise diminishing return improvement for leakage modality

The number of gates giving false alarm in a non Trojan circuit

Ct	Unanimous	Conservative	Majority	Weighted Voting
C8	0/165	3/165	1/165	2/165
C432	1/206	2/206	1/206	1/206
C1355	0/512	4/512	2/512	2/512
C499	0/532	3/532	1/532	1/532
C3450	0/1131	3/1131	3/1131	3/1131

Summary and conclusion

- Proposing a unified noninvasive Trojan detection framework
- Formulating the optimization problem for simultaneous gate level profiles and Trojan detection for each modality
- Exploiting submodularity to achieve a near optimal solution for unimodul detection
- Devising and comparing four methods for combining the results of multiple unimodal detections.